• Limitless_screaming@kbin.social
      link
      fedilink
      arrow-up
      0
      ·
      1 year ago

      If you have two charges q1 and q2, you can get the force between them F by multiplying them with the coulomb constant K (approximately 9 × 10^9) and then dividing that by the distance between them squared r^2.

      q1 and q2 cannot be negative. Sometimes you’ll not be given a charge, and instead the problem will tell you that you have a proton or electron, both of them have the same charge (1.6 × 10^-19 C), but electrons have a negative charge.

  • Melatonin@lemmy.dbzer0.com
    link
    fedilink
    arrow-up
    0
    ·
    1 year ago

    If there’s anyone who can, please let me know if the similarities between these two formulas imply a relationship between gravity and electrical attraction or hint at a unified theory, or if it’s just a coincidence or a consequence of something else.

    • Claidheamh@slrpnk.net
      link
      fedilink
      arrow-up
      3
      ·
      edit-2
      1 year ago

      The relation between them is that they’re both forces that scale with the inverse square of the distance between the objects. Any force that scales with the inverse square of distance has pretty much the same general form.

      Another similarity is that both are incomplete, first approximations that describe their respective forces. The more complete versions are Maxwell’s laws for electromagnetism and General Relativity for gravity.

    • trustnoone@lemmy.sdf.org
      link
      fedilink
      arrow-up
      1
      ·
      1 year ago

      There is one thing particularly interesting, and that is that the inverse square laws appears again. It appears in the electrical laws for instance.

      That is electricity also exerts forces inverse to the square of distance with charges. One thinks perhaps inverse square distance has some deep significance, maybe gravity and electricity are different aspects of the same thing

      Today our theory of physics, laws of physics are a multitude of different parts and pieces that don’t fit together very well. We don’t understand the one in terms of the other. We don’t have one structure that it’s all deduced we have several pieces that don’t quite fit yet.

      And that’s the reason in these lectures instead of telling you what the law of physics is I talk about the things that’s common in the various laws because we don’t understand the connection between them.

      But what’s very strange is that there is certain things that’s the same in both

      Richard Feynman and 45:48 https://youtu.be/-kFOXP026eE?si=hAIvDhWVGxMOvEi1

    • gentooer@programming.dev
      link
      fedilink
      arrow-up
      1
      ·
      1 year ago

      Electromagnetism and gravity are both mediated by massless bosons; photons and gravitons respectively. This is why both forces follow the inverse square law.

      • Tlaloc_Temporal@lemmy.ca
        link
        fedilink
        arrow-up
        1
        ·
        1 year ago

        I don’t think there’s any evidence for gravitons yet, and gravity hasn’t been quantized. I’d say it’s this similarity that’s the best argument of quantum gravity, not the other way around.

        • gentooer@programming.dev
          link
          fedilink
          arrow-up
          1
          ·
          1 year ago

          Fair. The masslessness of the bosons that should mediate gravity, along with them being spin-2, can however be deduced from the properties of gravitational waves.

          • tias@discuss.tchncs.de
            link
            fedilink
            arrow-up
            1
            ·
            edit-2
            1 year ago

            We know that gravity is a wave that travels at the speed of light, this has been experimentally measured many times. If it is also quantized (a very reasonable symptom hypothesis since everything else that we’ve ever seen is) then by definition there are particles that carry gravity.

            If gravity is continuous then we would end up with something like the ultraviolet catastrophe but for gravity.

            • Tlaloc_Temporal@lemmy.ca
              link
              fedilink
              arrow-up
              0
              ·
              1 year ago

              Hmm, I hadn’t considered an “ultragravity catastrophe”. I wonder if this could accout for dark energy or the supposed inflatons? Probably not, the catastrophe suggests infinite energy, not just lots of energy, eh?

              The ultraviolet catastrophe was averted due to the discreet nature of electrons though, and I don’t recall gravity behaving as a blackbody radiator anyway. Would this come into effect at horizons?

              • tias@discuss.tchncs.de
                link
                fedilink
                English
                arrow-up
                1
                ·
                edit-2
                1 year ago

                Sorry, I think I came off as too confident in my previous comment. I’m quite sure about my first paragraph but the rest is just speculation from an amateur.

                If I would risk speculating even further though, there’s some similarity in the sense that infinities indicate a problem. In the ultraviolet catastrophe the infinity arises from the energy of arbitrarily short EM wavelengths. With gravity it arises in the density of black holes. It seems unreasonable that it would actually be infinite, and it’s possible that quantization of gravity plays a part in preventing that from happening.