(yes, it even uses less water in water-scarce places)

  • Ephera@lemmy.ml
    link
    fedilink
    English
    arrow-up
    0
    ·
    2 years ago

    It’s generally assumed that oat milk will easily become cheaper than cow milk when mass production takes off. It requires fewer resources (no cows consuming energy) and the process is easy to automate.
    But yeah, for now, lactose-intolerant and vegan folks need to pay high prices to kickstart that…

    • TheAnonymouseJoker@lemmy.ml
      link
      fedilink
      English
      arrow-up
      0
      arrow-down
      2
      ·
      2 years ago

      I would also argue about oat protein not being as bioavailable as 4 parts whey 1 part casein protein exists in dairy milk. Casein and whey are twice as bioavailable as plant proteins, which brings in the requirement of pairing up a protein rich meal.

      • usernamesAreTricky@lemmy.mlOP
        link
        fedilink
        English
        arrow-up
        0
        ·
        2 years ago

        Interestingly enough, there are now non-animal whey milks out there (made via fermentation). It’s worth noting that protein bioavailable numbers are pretty misleading because the way they are done overvalues the availability of animal products and undervalues it for plant-based foods

        While multiple strengths characterize the DIAAS, substantial limitations remain, many of which are accentuated in the context of a plant-based dietary pattern. Some of these limitations include a failure to translate differences in nitrogen-to-protein conversion factors between plant- and animal-based foods, limited representation of commonly consumed plant-based foods within the scoring framework, inadequate recognition of the increased digestibility of commonly consumed heat-treated and processed plant-based foods, its formulation centered on fast-growing animal models rather than humans, and a focus on individual isolated foods vs the food matrix. The DIAAS is also increasingly being used out of context where its application could produce erroneous results such as exercise settings. When investigating protein quality, particularly in a plant-based dietary context, the DIAAS should ideally be avoided.

        (emphasis mine)

        https://link.springer.com/content/pdf/10.1007/s13668-020-00348-8.pdf

        • TheAnonymouseJoker@lemmy.ml
          link
          fedilink
          English
          arrow-up
          0
          arrow-down
          2
          ·
          2 years ago

          I would prefer going through the study instead of taking the summary at face value. The study is heavily paywalled, and I will retain the findings of DIAAS and PDCAAS being relevant in case of plant proteins.

          • usernamesAreTricky@lemmy.mlOP
            link
            fedilink
            English
            arrow-up
            0
            ·
            2 years ago

            I can quote some of the relevant sections here (not supposed to share the whole thing). These are just some of the problems listed with the metrics there’s quite a lot more but this comment is getting too long

            The relative protein content, IAA content, and IAA profile of a given food are required to calculate the DIAAS. The FAO has not prescribed a specific methodology to determine protein content for the DIAAS but acknowledged that nitrogen con- tent can be used to estimate protein content for the PDCAAS [24]. Food-specific nitrogen-to-protein conversion factors have been determined for various foods and can be used for this calculation; however, the FAO does not recommend their use. Instead, it recommends that the generalized nitrogen-to- protein conversion factor be utilized [29]. The generalized factor was set at 6.25 because all proteins were originally estimated to contain 16% nitrogen; however, this varies great- ly between proteins [32]. Importantly, estimating protein content using the general- ized or food-specific factors influences the corresponding PDCAAS and DIAAS. For example, the food-specific factors for almonds and soybeans are 5.20 and 5.61, respectively. As a result, using the generalized factor to calculate their DIAAS yields 16.8% and 10.2% lower values, respectively, than when they are calculated based on their food-specific factors. Conversely, the food-specific factors for skim milk and yogurt are 6.36 and 6.40, respectively [33]. Accordingly, their DIAAS are higher when generalized factors are used. In ad- dition, greater discrepancies exist between conversion factors for plant foods than animal foods, with recent values ranging from 5.3 to 5.8 for grains compared with 5.85–6.15 for milk products [34]. The particular methodology used to calculate protein content therefore influences the DIAAS of plant and animal foods differently, decreasing scores for plant-based sources of protein while increasing scores for animal-based sources of protein. Due to differences in the ranges of food- specific factors, use of the generalized factor may also lead to more inaccurate scores for plant foods than animal foods.

            Most literature examining dietary protein consumption and postprandial muscle protein synthesis (MPS) has focused on isolated protein sources, as used in the DIASS method, with limited literature focusing on the influence of whole foods on MPS [31•]. In most settings, protein is not consumed in isolation. Rather, whole foods are consumed with their intrinsic nutrients exhibiting a synergistic and concerted effect [48] and can influence the post-exercise MPS [49–51].

            Raw foodstuff is used for most DIAAS modeling, whereas protein-rich plant foods (legumes, grains, etc.) typically un- dergo heat treatment, processing, or both before human con- sumption. Common cooking techniques modify proteins, with heat-treated plant-based proteins demonstrating higher digest- ibility compared with unprocessed sources [30, 52]. One such modification relates to the protease inhibitor trypsin, and pro- cessing treatments have been shown to deactivate as much as 80% of its inhibitory activity in raw flour [52]. Malting and fermentation processes can also increase the digestibility of some proteins, likely by bacterial protein pre-digestion and the lessening of “anti-nutrients” like oxalates, tannins, and phytic acid [31•, 53]. Their effects are significant, both for foods and supplements. The fermentation of grain coupled with other cooking techniques, as is often employed in tradi- tional cooking methods (e.g., sourdough bread), can increase the digestibility of grain protein to a level approaching that of meat [53]. Further, compared with untreated pea seeds, pea protein concentrate demonstrated 12% higher digestibility, matching the protein digestibility of casein [52].

            • TheAnonymouseJoker@lemmy.ml
              link
              fedilink
              English
              arrow-up
              0
              arrow-down
              2
              ·
              2 years ago

              Appreciated. I want to see more studies over time to form a position on our current understanding of the food protein sciences.

              • usernamesAreTricky@lemmy.mlOP
                link
                fedilink
                English
                arrow-up
                0
                ·
                2 years ago

                This is a review study, so it does look at multiple studies over time (Also note that I did not downvote you, it seems that you have accidentally removed your own default upvote. I had that happen to me earlier)

                • TheAnonymouseJoker@lemmy.ml
                  link
                  fedilink
                  English
                  arrow-up
                  0
                  arrow-down
                  2
                  ·
                  2 years ago

                  Its obvious to me who downvotes on the internet, it was me, not you. I prefer my gut feeling about things, even if something has been said by some people. It helps me wait and see the outcome better.