• myslsl@lemmy.world
      link
      fedilink
      English
      arrow-up
      1
      ·
      edit-2
      9 months ago

      Eigenvectors, values, spaces etc are all pretty simple as basic definitions. They just turn out to be essential for the proofs of a lot of nice results in my opinion. Stuff like matrix diagonalization, gram schmidt orthogonalization, polar decomposition, singular value decomposition, pseudoinverses, the spectral theorem, jordan canonical form, rational canonical form, sylvesters law of inertia, a bunch of nice facts about orthogonal and normal operators, some nifty eigenvalue based formulas for the determinant and trace etc.

    • jxk@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      1
      ·
      9 months ago

      You want an answer?

      So you’ve probably learned that if u is an eigenvector, then multiplying u by any scalar gives you another eigenvector with the same eigenvalue. That means that the set of all a*u where a is any scalar forms a 1-dimensional space (a line if this is a real vector space). This is an eigenspace of dimension one. The full definition of an eigenspace is as the set of all eigenvectors of a given eigenvalue. Now, if an eigenvalue has multiple independent eigenvectors, then the set of all eigenvectors for that eigenvalue is is still a linear space, but of dimension more than one. So for a real vector space, if an eigenvalue has two sets of independent eigenvectors, its eigenspace will be a 2-dimensional plane.

      That’s pretty much it.